
CST1B10
The Structure and Interpretation of Computer Programs

Du Buqian | Maki’s Lab
December 11 2021

The University of New South Wales

Table of contents

1. Introduction

2. A Swift and Brutal Introduction to Racket

1

Introduction

Language and Platform

• In CST1B10, our codes will run in Windows.
• All codes will be written in Racket, a popular dialect of Scheme
instead of MIT-Scheme.

2

Our Goal

Our goal is that students who complete this subject should

• have a good feeling for the elements of style and the aesthetics
of programming

• have command of the major techniques for controlling
complexity in a large system

• be capable of reading a 50-page-long program, if it is written in
an exemplary style

• know what not to read, and what they need not understand at
any moment

• feel secure about modifying a program, retaining the spirit and
style of the original author

3

Textbook

[1] Structure and Interpretation of
Computer Programs, 2nd edition,
MIT Press

4

A Swift and Brutal Introduction to
Racket

Saluton mondo!

Code:

(d i sp lay ” Saluton Mondo ! ”)

5

The Elements of Programming

• primitive expressions
• means of combination
• means of abstraction

6

Expressions

Run the REPL(Read-Evaluation-Print-Loop) of Racket.

Then have fun!!!

7

Using Racket as A Calculator

Codes:

(+ 23 23) ; => 46
(− 233 23) ; => 210
(* 123 2) ; => 246
(/ 246 2) ; => 123

This sort of codes is called Polish notion or Prefix notation.

8

Some Concepts

Expressions representing numbers may be combined with an
expression representing a primitive procedure (such as + or *) to
form a compound expression that represents the application of the
procedure to those numbers.

(+ 23 23) ; => 46

In this simple code, ’+’ is a operator, and the other elements are
called operands.

Delimit these expressions by parentheses to denote the procedure
application which is called a combination.

9

Why Prefix notation?

Prefix notation is not very straightforward, but it is frequently shorter
than infix notion. Because prefix notion can accommodate
procedures that may take an arbitrary number of arguments. For
example:

(+ 1 2 3 4 5 6 7 8 9 10) ; => 55

if this was infix notion:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

That is not adorable.

10

Matryoshka doll

Racket allow you to write your code be nested like a Matryoshka doll.
For example:

(+ (* 2 (+ 2 3)) 3 5 (− 7 2)) ; => 23

11

Naming

In Racket, we name a thing by

(def ine a 10)

Therefore, in this line of code, ‘a’ is associated with ‘2’;

Absolutely, we also can name some symbols with other kinds of data:

(def ine pi 3 . 1 4 1 5 9 26)
(def ine b ’b ’)
(def ine mit ”Maki ’ s I n s t i t u t e of Technology ”)
(def ine toh ”猫头鹰魔法社 ”)

“define” is one of the simplest means of abstraction in Racket.

12

Environment

When the programs in last pages are runing, they need some
’containers’ to keep to track of the name-object pair. We call them
environments.

13

	Introduction
	A Swift and Brutal Introduction to Racket

